5. Finding Partitions Without Expert Knowledge

From*“ Verification, Validation, and Evaluation of Expert Systems, Volume|”

This chapter presents techniques for partitioning large expert systems when expert knowledgeis
unavalable.

Introduction

Generdly, it is best to partition a knowledge base using expert knowledge, resulting in aknowledge
base that reflects the expert's conception of the knowledge domain. This, in turn, facilitates
communication with the expert, and later maintenance of the knowledge base. Chapter 7, “Knowledge
Modding”, presents techniques for partitioning using expert knowledge.

Sometimes, however, it is not possible to obtain expert insght into aknowledge base. In this case
functions and incidence matrices can be extracted from the knowledge base, and the information
contained therein used to partition the knowledge base.

Functions

Expert Systems are Mathematical Functions

Expert systems are, among other things, complicated functions in the mathematica sense of function.
[By definition, afunctionisaset F of ordered pairs, such that if (ab) and (c,d) arein F, and a= c, then
b=d] Lessformdly, afunction isasngle-vaued mapping from an input space (called the domain) to
an output space (caled therange); i.e., thereis only one vaue of the function for each point in the input
gpace. For example, KB1 isafunction that for each set of user data (i.e., anount of savings, persona
property, etc.) assigns atype of investment.

The input variables to an expert system viewed as afunction are the variables that are not computed
ingde the expert system, but are asked the of user or looked up in adatabase. Variablesthat are
inferred by rules or computed by functions in the knowledge base are not input variables. In KB1, for
example, purchase of lottery tickets and ownership of boats and luxury cars are input variables, while
risk tolerance and discretionary income are not. Tolerance and discretionary income, however, are
inputs to the investment subsystem of KB1.

Propositions that are possible conclusions of the expert system are Boolean output variables of the
expert system. Numerica or enumerated variables that are considered outputs of the expert system are
aso output variables. When viewed as afunction the value of an expert system is a vector of these
individua output variables.

Partitioning Functions into Compositions of Smpler Functions

Functions can be written as compositions of smpler functions. For expert systems, two of the
important relations that build more complex functions from smpler ones are Cartesian product and
function composition.

Cartesan Product

Suppose that an expert system made two different kinds of recommendations, e.g., atraffic
management system that both set the timing of lights and controlled access to exit ramps. This expert
system could be consdered as a function E that computed light timing and on ramp access from certain

inputs, e.g.:
E(inputs) = (timings, access).
E could be split into two expert systems that computed these results separately:
E = (timings(inputs), access(inputs)) (5.2).

While some of the inputs and intermediate conclusions might appear in both subsystems, (5.1)
decomposes E into two subsystems using the Cartesian product operation. The Cartesian product
operation in this case takes the two separate conclusions, timings(inputs) and access(inputs) and builds
the conclusons of E:

(timings(inputs), access(inputs))
by putting the separate conclusions of the subsystems together in afixed, predetermined order.
More generdly, if:
(y1,..,ym) =f(wl,...,wk),
(z1...,z9) = g(x1,....xn,),
then:
(y1,..,ym, z1...,zq) = f(wl,...wk) X g(x1,....xn,),
where X isthe Cartesian product operator.

Applied to expert systems, this result means that if thereis an expert system where input Ws are used
to compute the conclusion Y's, and the Xs are used to compute the Zs, the system can be partitioned
into subsystems:

(y1,..,ym) =f(wil,...,wk),

(z1...,z9) = g(x1,....xn,),

and the results concatenated together.
Function Composition

Function composition uses the results of an earlier function A asthe inputsto alater function B to
compute asingle overdl function C. Thisoveral function isthe result of :

1. Starting with the inputsto A.

2. Applying the function A to these inputs.

3. Applying B to the results of Step 2.

4. Using the results of step 3 asthe value of C.

In the Pavement Maintenance Expert System (PAMEX), for example, various data items are used to
compute the "Pavement Serviceability Index" (PSl) and other measures of pavement life. The PSI and
other smilar parameters are then fed into a follow-up set of rules that choose appropriate maintenance
procedures. PAMEX can be considered as a composition of the subsystem that computes indices with
the subsystem that uses these to compute appropriate maintenance procedures.

In mathematical notation, suppose the output of an expert system depends on a et of variables,
yl..ym,i.e:

E=1(yl,...ym)

In addition, suppose each of the y'sis afunction of some other variables, i.e.,:
yi = gi(xd,....xmi)
Then E = f(g1(x11,....x1m),

g2(x21,...,x2m),

gn(xmd,...,xnm))

i.e., the expert system E is the result of applying the function f to the result of applying Gsto the input
variables.

Note that which variables are functions of which others are properties of the expert system. This
means that afunction implemented by an expert system can not be arbitrarily rewritten asthe
composition of smpler functions. Instead, the choice of smpler functions is motivated by:

Which variables are functions of which other ones in the expert system knowledge base.

Which rewriting of the function computed by an expert system as the composition of functions
reduces the sze of the VV&E problem.

For KB1, investment is a composition of an investment function with risk tolerance and discretionary
income functions:

investment(risk_tolerance("lottery tickets', "stock ownership”),
discretionary_income("boat", "luxury car")).

Dependency Relations

To find the functions embedded in aknowledge base, it is hepful to compute the dependency relation
among variables.

Immediate Dependency Relation

Thefirst step isto compute the immediate dependency relation. If X1 and X2 are variablesin the
knowledge base, X2 isimmediately dependent on X1, if and only if, the following are true:

X1 appearsin an expression that computes X2.
X1 appearsintheif part of arule that sets or concludes X2.
XZ1isaninput to afunction that computes X2.

The table below shows the immediate dependency relation for Knowledge Base 1. Al appearsin cell
(1), if and only if, varigble Jisimmediately dependent on varigblel.

The immediate dependency relation for Knowledge Base 1 isshownin table 5.1.

Table5.1: Immediate Dependency Relation for KB1

immediate dependency LC B S LT DI | RT INV
luxury car (LC) 0 0 0 0 1 0 0
boat (B) 0 0 0 0 1 0 0
stocks (S) 0 0 0 0 0 1 0
lottery tickets (LT) 0 0 0 0 0 1 0
discretionary income (DI) 0 0 0 0 0 0 1
risk tolerance (RT) 0 0 0 0 0 0 1
investment (INV) 0 0 0 0 0 0 0

The immediate dependency relation shows which variables influence the value of other variables
through one level of computation (one rule inference or function computation) in the expert system.

Computing the Immediate Dependency Matrix

The immediate dependency matrix can be computed by syntactic inspection of the source code
(including both rules and procedures) of the expert system knowledge base. Although the underlying
computation is basicaly the same, the computation can be described ether as a database or as a sparse
matrix computation.

Database Description of Immediate Dependency Computation

The immediate dependency matrix can be constructed directly asfollows. In this construction, the
matrix is represented by ardation with 2 colums:

Column 1: A variable that affects another variable.
Column 2: A variablethat is affected by another variable.

Each row in the table represents a pair of variables such that the first affects the second directly in some
rule or function.

Start with an empty database.

For each rule or function in the knowledge base, find dl pairs (x,y) such that x isan input and y an
output of therule or function. Put each such pair in the database.

It isaso possble to construct the data base as the composition of two simpler tables:
Aninput table:

Column 1: Aninput varigble.

Column 2: A rule or function in the knowledge base.
A row (x,f) appearsin this table when avariable x isan input to arule or function f.
An output table:

Column 1: An output varigble.

Column 2: A rule or function in the knowledge base.
A row (x,f) gppearsin thistable when avariable x is an output to arule or function f.
Now by applying the following join operation to the tables, build atable where:

Column lisaninput variable.

Column 2 is an output variable.
Thereisarow for each variable pair (x,y) such that for somef, (x,f) isintable 1 and (y,f) in table 2.

Foarse Matrix Description of |mmediate Dependency Computation

The relation between input and output variables describes a aparse matrix representing the immediate
dependency relation. The rows and columns are indexed by variables. A 1 gppears for the matrix
position described by each row in the table constructed in the preceeding section, and a O appears for
al other matrix pogtions. By the definition of the immediate dependency relation, this sparse matrix
represents that relation.

The join-based computation described above can be written using sparse matrices as follow:
1. Congtruct input and output matrices.

The input matrix is based on table 1. The rows are indexed by variables and the columns by
functions and rules. A 1 appears when a variable is an input to arule or function. Zerosfill the
other matrix pogtions.

The Output matrix is based on table 2, but is the transpose of the matrix that directly represents
table 2. The rows are indexed by functions and rules. The columns are indexed by variables. A
1 appears when avariableis an output of arule or function. Zerosfill the other matrix positions.

2. Compute the product of the input matrix by the output matrix.
3. Booleanize the product matrix, i.e. replace dl non-zero entries by 1s.

This product matix has a 1 at position (x,y) whenever the product has a non-zero, i.e. when thereisa
rule or function f wherex isan input to f and f has'y as an outpui.

An Example

Dependency Relations of Ruleson Variablesin Knowledge Base 1

In KB1, dl atomic formulas set by the knowledge base are of the form:
VARIABLE =VALUE

When thisis the case, the immediate dependency of variables and rulesis sufficient to obtain the
dependency among variables. Table 5.2 shows how variablesinfluence rules.

Table5.2: How Variables Influence Rules
Rl |R2 |R3 |R4 |R5 |R6

LC 1 1
B 1 1

LT 1 1
DI 1 1
RT |1 1
INV

Dependency Relations of Variableson Rulesin Knowledge Base 1

Table 5.3 shows how rules influence variables.

Table5.3: How Rules Influence Variables

LC | B S LT | Dl RT | INV
R1 1
R2 1
R3 1
R4 1
R5 1
R6 1

Dependency Relations of Variableson Variablesin Knowledge Base 1

Multiplying A*B creates the matrix showing how each variable influences others. Positive numbersin
cdl (R,C) indicate that the variable in row R influences the variable in column C. Making thisinto a
Boolean matrix yields the immediate dependency matrix for variablesin KB1.

Table 5.4 shows the immediate dependency matrix for KB1.

Table5.4: Immediate Dependency Matrix for KB1

LC B |S LT DI | RT INV
LC 0 0 0 0 2 0 0
B 0 0 0 0 2 0 0
S 0 0 0 0 0 2 0
LT 0 0 0 0 0 2 0
DI 0 0 0 0 0 0 2
RT 0 0 0 0 0 0 2
INV 0 0 0 0 0 0 0

Using the extended immediate dependency relation R just defined, the user can compute a sub-
knowledge-base that is sufficient to compute a set of variables. Let SO be a set of output variables for
afunction f, chosen as discussed in the previous section. Let RR be either one of the R *an or the
relation R *d. Then the sub-knowledge base that computes f is defined by:

xisin Sub_KB(f) iff x RRy for somey in SO.
Operations on Relations

Using the immediate dependency relation, one may compute the influences of variables through any
number of levels of inference or function computation and composition. This requires union and
composition relations defined as follows:

Relation: A rdationis, from amathematica standpoint, a set of ordered pairs.

For example, the immediate dependency relation is shown as an ordered pair in figure 5.1:

{(LC,DI), (B,DI), (SRT), (LT,RT), (DI,INV), (RT,INV)}

A pair (x,y) appearsin theimmediate dependency relation if and only if x influencesthe vaue
of y.

Figure5.1: Immediate Dependency Relation as Ordered Pairs

Domain: If Risardation {x| for somey, xRy} isthedomain of R. Some examples of domains are
shown in figure 5.2.

Domain of the investment subsystem of KB1:

{ ("discretionary income" = yes, "risk tolerance" = high),

("discretionary income" = no, "risk tolerance" = high),
("discretionary income" = yes, "risk tolerance”’ = low),
("discretionary income" = no, "risk tolerance" = low)}
Domain of the immediate dependency relation for KB1:
{luxury car, boat, stocks, lottery tickets, discretionary

tolerance, risk tolerance, investment}

Figure 5.2 Examples of Domains

Range: {y|for somex, xRy} istherange of r. For example, the range of the investment subsystem of
KB1lis{ stocks, savings account}; the range of the immediate dependency relation is{0, 1}.

Composdtion: If R1 and R2 are relations, the relation (R1 o R2) is defined asfollows: x (R1 0 R2) z if
and only if thereisay suchthat x Rly andy R2 z.

For example, the composition of the immediate dependency relation of KB1 with itsdlf is:
{(LC,INV), (B,INV), (SINV), (LT,INV)}.

For an immediate dependency relation R among the variables of an expert system, (x,z) isin RoR if and
only if thereisay such that (x,y) and (y,z) arein R; i.e, thereisavariable y such that x influencesy
andy influencesz. In other words, RoR shows the variables that indirectly influence another variable
acting through a single intermediate varigble.

Matrix representation: When range(R1) = domain(R2)

the composition operation R1 0 R2 can be computed by matrix multiplication. A relation R is
represented by amatrix M ={m(i,j)} if and only if:

m(i,j) = 1iff x Ry wherex isvariablei and y isvariable |
m(i,j) = 0 otherwise.
Table 6.1 shows the immediate dependency relation in matrix form.
If Mi represents Ri, B(M1 0 M2) represents R1 0 R2, where:

M1 0 M2 represents matrix product of M1 and M2.

B(M) ={bm(i,))} representsthe Boolean operation on matrices, i.e.,
bm(i,j)) = 1iff m@i,j) =0
bm(i,)) = 0iff m(i,j) = 0.

Theorem 5.1: If R1 and R2 are immediate dependency matrices, B(M1 o M2) represents R1 0 R2
when M1 represents R1 and M 2 represents R2.

This theorem says that the representation of the indirect dependency relation with one intermediate
variable can be computed by Booleanizing the matrix product of the immediate dependency matrix
with itself.

Proof: Let M bethe matrix that represents R1 o R2, based on a numbering of the relevant variables
vl,..vn. The (i) entry of M is1if and only if vi influencesvj. This meansthat there two sets of inputs
where the vi's differ, and dso where the results of gpplying (R1 o R2) to these inputs differ. On these
two inputs, one of the inputs to R2 must vary on the two inputs; if no input to R2 varied, the output
would aso not vary on the two inputs.

Since at least one input variable to R2 varies when vi varies, let vk be such an input to R2. Since vk
varieswhen vi varies, R1(1,k) = 1. Likewise, saincevj varieswhen vk varies, R2(k,j) = 1. Thismeans
that:

thekth entry of rowi =1

the kth entry of columnj = 1.
Asareault, kth summand in the inner product:

(Row i of M1) * (columnj of M2) (5.2

is1l. Sincedl entriesof M1 and M2 are non-negative, the Cartesian product (6.2) is non-zero. This
means that (M1 o M2) hasanon-zero (i,j) entry, so B(M1 o M2)(i,j) = 1. Theresultisthat
everywhereM is1, B(M1oM2)isdso 1.

Now let (m,n) bealocationin B(M1 o M2) whichis1. Thiswill betrueonly if the (m,n) entry of M1
o0M2isnon-zero. Sincedl entriesof M1 and M2 are non-negative, (M1 o M2)(m,n) > 0. Thisentry
of M1 o0 M2 istheinner product:

(row mof M1) * (column n of M2)

so the inner product is poditive. Thisis possble only if thereisak so that the kth entry in each of these
vectorsis non-zero. Thismeansthat for some k, the kth entry of row m of M1 and the kth entry of
columnnof M2 areboth 1, i.e.;:

M1(mKk)=1

M2(k,n)=1.

10

This means that vm influences vk and vk influences vn. Therefore, vm influences vn, showing that M,
the representation of (R1 0 R2), hasa 1 wherever B(M1 0o M2) hasal.

Combined with the earlier result, it is evident that the two matrices M and B(M1 o0 M2) have the same
set of 1's. Since both matrices have only 1 and O entries, the matrices are equd.

For example, in KB 1, B influences DI, asindicated by the 1 in the (B,DI) entry of the immediate
dependency relation of KB1. Intable 6.1, this appearsin the (2,5) location. Likewise, DI influences
INV, and the (5,7) entry of the tableis 1, meaning that multiplying the table by itsdlf, when the inner
product of row 2 by column 7 is computed, the 1'sin position 5 cause the inner product to be non-
zero. Thisrepresents the fact that variable 2 (B) influences INV, variable 7, through the intermediary
of variable 5, VI.

Table 5.5 shows the matrix product of the immediate dependency relation by itsdf. Inthiscasg, itis
also the Boolean composition operation.

Table5.5: Matrix Product of the Dependency Relation by Itself

immediate dependency LC B S LT DI | RT INV
luxury car (LC) 0 0 0 0 0 0 1
boat (B) 0 0 0 0 0 0 1
stocks (S) 0 0 0 0 0 0 1
lottery tickets (LT) 0 0 0 0 0 0 1
discretionary income (DI) 0 0 0 0 0 0 0
risk tolerance (RT) 0 0 0 0 0 0 0
investment (INV) 0 0 0 0 0 0 0

Power: If Risardation,
R**1=R
R**(n+1) = R o (R**n).

The power relation finds those variables which influence a variable through a chain of intermediate
variables of some particular length. For R**n the chain of intermediate variablesis of length n-1.

If M represents R and M**n isthe product of n Ms, then B(M**n) represents R**n.

The previous table shows R**2 when R is the immediate dependency relation. Higher powers of the
immediate dependency relation are empty (al zerosin the matrix representation).

Theorem 5.2. M**n represents the indirect influence of variables with n-1 intermediate variables.

11

Proof: Theorem 5.2 follows from Theorem 5.1 by mathematica induction.

Union: If R1 and R2 are relations with the same domain and range, the rdation (R1 U R2) isthe
relaionsuchthat x (R1LU R2) y iff x Rly or x R2y.

The union and composition operations are used to build relations about dependency through multiple
levels of inference. For example, if x D2y, if and only if X influencesyy, directly or through an
intermediate variable, D2 =D U D o D, where D is the intermediate dependency relation and o isthe
composition operation.

Theorem 5.3 If Mi represents Ri, B(M1+M2) represents R1 U R2.

Proof: B(M1+M2)(i,j) = 1iff M1(i,)) or M2(i,)). Iff x istheith variable and y isthe jth variable,
M1(i,j) or M2(i,)) iff xRLy or x R2y, i.e.

x(RLUR2)y.
Figure 5.2 represents:
RU (R**2)
where R is the immediate dependency relation of KB1.
Accumulation: The accumulation operator R *an is defined as follows:
R*al=R
R*a(n+l) =(R*an) U (R** (nt+l))

The accumulation R *an of ardation finds al the variables that influence a variable through a chain of
n-1 or fewer intermediate variables.

Theorem 5.4: R *an represents the dependency relation between n-1 or fewer intermediate variables.
If M represents R, B(M *an) represents R *an.

Proof: Thisfollowsfrom Theorems5.2 and 5.3.

Dependency: Therdations{ lim R *an} form an increasing sequence of relations, i.e, if (X,y) isin
*an, (x,y) isin*am for m>=n. Therefore, the limit of this sequence as n --> infinity exists, and is
equd to theunion of the R *anfor dl n. Thislimit will be cdled R*d.

Define the dependency relation D(R) asfollows. x D(R) y iff the varigble x influencesthe varigbley. It
isonly possblefor x to influencey if there is some (possbly empty) chain of intermediate, eg., X, z1,
.., ZN, y such that each variable influencesits successor, i.e., each successive pair of variablesisin the
relation R. However, thenx R**(n+1) y, sox (R*an)y,

0 X R*dy, and D(R) <= R*d.

12

However, if x R*d Yy, for somen, (x,y) R*am for m > n (by definition of limit). Pick anmO>n. Then
x R*amO0y, so for some m1 <=moQ,

X R**(m1) y. Then thereisachain of m1+1 intermediate variables, z1,...zm1+1 such that
x,z1,...,zm1+1y isasequence in which successve variablesarein R, and R*d < D(R).

Combining thiswith the previous result proves theorem 5.5.
Theorem 5.5: Thelimit R*d of the accumulation relations represents the dependency relation D(R).

Since both the sequences{B(M*n)} and { R*n} are monotone increasing and have only afinite number
of possible vaues, each of these sequencesis eventudly constant. That congtant isthe limit of the
sequence. Pick an nO great enough so that each sequence has reached itslimit. By Theorem 5.4, B(M
*n0) represents R *n0 where M represents R. Since equa matricies represent equal relations, the
limits can be substituted in this"represents’ relation, proving

Theorem 5.6 The matrix lim(n->infinity)(B(M *an)) represents D.

The dependency relation represents the relation that istrue for al variables that influence agiven
variable, and false otherwise. Figure 5.2 isthe accumulation of the immediate dependency relation of
KB1. Anentry inthetableis 1iff the variable on the right is dependent on avariable on the lft.

To compute the dependency relation from the immediate dependency relation:

Computein sequenceeach R *an.
When the R *an no longer change, the current R *an is the dependency relation R*d.

Table 5.6. shows the dependency relation of the immediate dependency relation of Knowledge Base 1.

Table5.6: Immediate Dependency Relation of KB1

13

LC | B S LT | DI RT | INV
luxury car (LC)| O 0 0 0 1 0 1
boat B)|0 0 0 0 1 0 1
stocks 9]0 0 0 0 0 1 1
lottery tickets (LT)| O 0 0 0 0 1 1
discretionary income (DhH |0 0 0 0 0 0 1
risk tolerance (RT) | O 0 0 0 0 0 1
invesment (INV) 0 0 0 0 0 0 0

Finding Functionsin a Knowledge Base

To carry out a partition of a knowledge base based on function composition, it is necessary to find
functions embedded in the knowledge base. In particular, the god isto find subsets S| and SO of the
knowledge base variables such that the:

Vauesof SO are afunction of theinputsin Sl.
Variablesin Sl are used at most infrequently outside this function.

Choosing the Output and Input Variables of a Function

Each column vector in the dependency relation matrix shows which variables influence each other. For
example, the first 4 columns of the dependency matrix for KB 1 are dl Os, because these are input
variables and are not influenced by any other variablesin the KB. Discretionary income (DI) has 1'sfor
the two variables that influence it, namely the boat and luxury car. Investment has nearly dl 1's,
because dl variables except itsdf influence its vaue.

To find the set of variables whose Cartesian product will be the output of afunction in the KB, cluster
viahigh correlation the column vectorsin thetable. The clusters should be performed in such away
that al members of a cluster are highly correlated with each other, indicating that al the variables
computed by afunction use about the same set of input variables.

The variable clusters of the dependency relation of the immediate dependency relation of Knowledge
Base 1l are:

{luxury car, boat}
{stocks, lottery tickets}
{ discretionary income, risk tolerance}

{investment}

14

Once a &t of output variables has been chosen, the set of input variables for the function conssts of the
union of al variablesfor each member of the output variable set. Table 5.7 shows variable clusters of
the dependency relation of KB1.

Table5.7: Variable Clugters of the Dependency Relation of KB1

VARIABLE CLUSTER INPUT VARIABLES
{LC,B,S LT} none

{DI} {LC,B}

{RT} {LT,S}

{INV} {DI,RT}

Finding the Knowledge Base that Computes a Function

In the previous section, the input and output variables were computed for a set of functions that
partition the knowledge base. Table 5.4 illustrates this partitioning for knowledge base 1.

Given the input and output variables for a function, the subset of rules and functions in the knowledge
base used to compute that function can be found asfollows. Note that the input and output matrices
from which the immediate dependency relation is computed are used in this computation. Refer to
Computing the Immediate Dependency Reation for details about computing these matrices.

1. Start with the output variables of the function. Set the current unprocessed output variables to the
set of output variables. Start with an empty set of rules and KB functionsin the KB subset
implementing the function; cal the set of implementing and rules IMP.

2. For each current unprocessed output variable y, and each function or rule f which hasy asan
output, add f to IMP. Removey from the set of unprocessed output variables.

3. For each f added to IMP, examine dl x such that x isan input to f. If X isnot an input to the
function for which aKB isbeing computed, add x to the set of unprocessed output variables.

4. Continue this process until the set of unprocessed output variablesis empty.

Hoffman Regions

For logica completeness and consistency of an expert system, an important concept is the Hoffman
regions (suggested by Roger Hoffman of FHWA). If V1..Vn are the variables of a knowledge base,
with domains D1...Dn respectively, a Hoffman region isamaximal subset of the input space, the
Cartesan product D1x...xDn, on which each atomic formulain the knowledge base has asingle truth
vaue. For any knowledge base, thereis a unique set of Hoffman regions that cover and partition the

input space.

A run of an expert system is completely determined by the vaues of the atomic formulas that appear in
the KB rules. Provided that the expert system does not use external numerica software, thereisno

15

need to run two different test cases that evaluate the same on al the atomic formulas. If two different
test cases evauate some atomic formula differently, however, the firing of some rule, and hence the
results of the expert system, may differ between the two test cases. Therefore, the set of test cases that
must be tested are in 1-to-1 correspondence with the regions where dl the atomic formulas have the
same value. These regions where the atomic formulas are the same are caled Hoffman regions.

Each point in input space determines truth values for each of the atomic formulas in the knowledge
base. A rdation H(P1,P2) can be defined on input point spaces asfollows: H(P1,P2) istrueif and only
if P1 and P2 determine the same set of atomic formulatruth valuesfor al atomic formulasin the KB.

H so0 defined is an equivaence relation, and partitions the input space into mutualy digointed regions
that cover the input space.

It is generaly not possible to find smple, exact descriptions for al the Hoffman regions when a
knowledge base contains atomic formulas that contain severa variables, eg., exp(X)<Y”3. Itis
possible, however, to find an approximate set of Hoffman regions of descriptions such that:
Every Hoffman region isin the approximate set of Hoffman regions.
A member of the approximate set of Hoffman regionsis either a Hoffman region, or is the empty
S, i.e. isan empty region of input space.
The et of possible Hoffman descriptions D can be computed as follows:
For atomic formulas containing two or more variables, the Hoffman regions of these atomic
formulas are TRUE and FALSE.

Sort dl the atomic formulas containing only one variable into subsets, putting al the formulas
containing the same variable together.

Normalize formulas containing relation operators so that the variable appears on the | eft.
Lexicaly sort the formulas for each variable asfollows:
The mgor sort is by the right sde of the formula

The minor sort is by relational operator, where the relation operators in ascending order are: <,
<=, =, >z, >,

Create a st of intervals for each numerica variable that:
Cover thered line, or at least the possible domain of the variable.

For dl points in any interva, the truth vaues of the atomic predicates (of that single variable)
are the same.

Theintervas are maximal, given the truth value congtraint.

For each string variable, let the Hoffman regions be the list of values that appear in the KB.
L et the Hoffman regions of the KB as awhole be the Cartesan product of the Hoffman regions for
theindividud variables.

Note that in KB’ s with atomic formulas with more than one variable, the use of TRUE or FALSE as
the Hoffman regions is a compromise to avoid having to decide exactly when combinations of these
formulas aretrue. This meansthat some Hoffman regions may be unsatisfiable. Therefore, if

16

exhaudtive testing shows an inconsistency in some Hoffman region which is partly defined by atomic
formulas of more than one variable, there are two possibilities:

The Hoffman region is unsatisfiable, so the expert system is OK.
The Hoffman region is satisfiable, and the expert system has an inconsistency.

If aHoffman region is found where the expert system isinconsistent, it should be determined whether
the Hoffman region is satisfiable. Table 5.8 illustrate this concept.

Table5.8: Hoffman Regionsfor KB1

LC=yes LC=yes LC=yes LC=yes
B=yes B=yes B=yes B=yes
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=no LC=no LC=no LC=no
B=yes B=yes B=yes B=yes
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=yes LC=yes LC=yes LC=yes
B=no B=no B=no B=no
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=no LC=no LC=no LC=no
B=no B=no B=no B=no
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no

When is a Partitioning Advantageous

Let CH(KBO) be the cardinality of the Hoffman region set of knowledge base KBO. Theworst casein
proving aresult on aknowledge base KB with sub-KB KB1 is, using the result of the previous section,
CH(KB1) + CH(~KB1). If thisnumber is sgnificantly smaler than CH(KB), the partitioning pays off
in reducing the size of aVV&E problem.

Hoffman Regions of Partitioned KB1

The KB can be split into the following pieces:

17

Final concluson KB: Thiscontainsrules 1 and 2, and determines the type of investment.
Risk tolerance KB: This contains rules 3 and 4, and determines the comfort leve of the client
regarding risk.

Discretionary income KB: This containsrules 5 and 6, and determines whether the client has
discretionary income.

Each of these KB’ s has two input variables each with two values, or four Hoffman regions. Therefore
the total number of Hoffman regions after partitioning is twelve, a 25 percent reduction. A greater
reduction isfound in many larger knowledge bases.

18

